Curie (unit)

Curie
A sample of radium, the element which was used in the original definition of the curie.
General information
Unit ofActivity
SymbolCi
Named afterPierre Curie and Marie Curie
Conversions
1 Ci in ...... is equal to ...
   rutherfords   37000 Rd
   SI derived unit   37 GBq
   SI base unit   3.7×1010 s−1
Sample of cobalt-60 that emits 1 μCi (microcurie) of radioactivity; i.e. 37,000 decays per second.

The curie (symbol Ci) is a non-SI unit of radioactivity originally defined in 1910. According to a notice in Nature at the time, it was to be named in honour of Pierre Curie,[1] but was considered at least by some to be in honour of Marie Curie as well,[2] and is in later literature considered to be named for both.[3]

It was originally defined as "the quantity or mass of radium emanation in equilibrium with one gram of radium (element)",[1] but is currently defined as 1 Ci = 3.7×1010 decays per second[4] after more accurate measurements of the activity of 226Ra (which has a specific activity of 3.66×1010 Bq/g[5]).

In 1975 the General Conference on Weights and Measures gave the becquerel (Bq), defined as one nuclear decay per second, official status as the SI unit of activity.[6] Therefore:

1 Ci = 3.7×1010 Bq = 37 GBq

and

1 Bq ≅ 2.703×10−11 Ci ≅ 27 pCi

While its continued use is discouraged by the National Institute of Standards and Technology (NIST)[7] and other bodies, the curie is still widely used throughout government, industry and medicine in the United States and in other countries.

At the 1910 meeting, which originally defined the curie, it was proposed to make it equivalent to 10 nanograms of radium (a practical amount). But Marie Curie, after initially accepting this, changed her mind and insisted on one gram of radium. According to Bertram Boltwood, Marie Curie thought that "the use of the name 'curie' for so infinitesimally small [a] quantity of anything was altogether inappropriate".[2]

The power emitted in radioactive decay corresponding to one curie can be calculated by multiplying the decay energy by approximately 5.93 mW / MeV.

A radiotherapy machine may have roughly 1000 Ci of a radioisotope such as caesium-137 or cobalt-60. This quantity of radioactivity can produce serious health effects with only a few minutes of close-range, unshielded exposure.

Radioactive decay can lead to the emission of particulate radiation or electromagnetic radiation. Ingesting even small quantities of some particulate emitting radionuclides may be fatal. For example, the median lethal dose (LD-50) for ingested polonium-210 is 240 μCi; about 53.5 nanograms.

The typical human body contains roughly 0.1 μCi (14 mg) of naturally occurring potassium-40. A human body containing 16 kg (35 lb) of carbon (see Composition of the human body) would also have about 24 nanograms or 0.1 μCi of carbon-14. Together, these would result in a total of approximately 0.2 μCi or 7400 decays per second inside the person's body (mostly from beta decay but some from gamma decay).

  1. ^ a b Rutherford, Ernest (6 October 1910). "Radium Standards and Nomenclature". Nature. 84 (2136): 430–431. Bibcode:1910Natur..84..430R. doi:10.1038/084430a0.
  2. ^ a b Frame, Paul (1996). "How the Curie Came to Be". Health Physics Society Newsletter. Archived from the original on 20 March 2012. Retrieved 3 July 2015.
  3. ^ United States Atomic Energy Commission (1951). Semiannual Report of the Atomic Energy Commission, Volume 9. p. 93.
  4. ^ "Resolution 7 of the 12th CGPM". International Bureau of Weights and Measures (BIPM). 1964. Archived from the original on 2021-02-19.
  5. ^ Delacroix, D. (2002). "Radionuclide and Radiation Protection Data Handbook 2002". Radiation Protection Dosimetry. 98 (1). Nuclear Technology Publishing: 147. doi:10.1093/oxfordjournals.rpd.a006705. PMID 11916063. Archived from the original on 2016-03-05.
  6. ^ "SI units for ionizing radiation: becquerel". Resolutions of the 15th CGPM (Resolution 8). 1975. Retrieved 3 July 2015.
  7. ^ NIST Special Publication 811, paragraph 5.2 (Report). NIST. 28 January 2016. Retrieved 22 March 2016.

Developed by StudentB